Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.753
Filtrar
2.
BMC Med Genomics ; 17(1): 94, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641846

RESUMO

BACKGROUND: Copy number variations (CNVs) have emerged as significant contributors to the elusive genetic causality of inherited eye diseases. In this study, we describe a case with optic atrophy and a brain aneurysm, in which a de novo CNV 3q29 deletion was identified. CASE PRESENTATION: A 40-year-old female patient was referred to our department after undergoing aneurysm transcatheter arterial embolization for a brain aneurysm. She had no history of systemic diseases, except for unsatisfactory best-corrected visual acuity (BCVA) since elementary school. Electrophysiological tests confirmed the findings in retinal images, indicating optic nerve atrophy. Chromosomal microarray analysis revealed a de novo deletion spanning 960 kb on chromosome 3q29, encompassing OPA1 and six neighboring genes. Unlike previously reported deletions in this region associated with optic atrophy, neuropsychiatric disorders, and obesity, this patient displayed a unique combination of optic atrophy and a brain aneurysm. However, there is no causal relationship between the brain aneurysm and the CNV. CONCLUSION: In conclusion, the optic atrophy is conclusively attributed to the OPA1 deletion, and the aneurysm could be a coincidental association. The report emphasizes the likelihood of underestimating OPA1 deletions due to sequencing technology limitations. Recognizing these constraints, healthcare professionals must acknowledge these limitations and consistently search for OPA1 variants/deletions in Autosomal Dominant Optic Atrophy (ADOA) patients with negative sequencing results. This strategic approach ensures a more comprehensive exploration of copy-number variations, ultimately enhancing diagnostic precision in the field of genetic disorders.


Assuntos
Aneurisma Intracraniano , Atrofia Óptica , Feminino , Humanos , Adulto , Mutação , Variações do Número de Cópias de DNA , Aneurisma Intracraniano/genética , Atrofia Óptica/genética , Fenótipo , Cromossomos , Linhagem , GTP Fosfo-Hidrolases/genética
3.
BMJ Open Ophthalmol ; 9(1)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626931

RESUMO

OBJECTIVE: To investigate the characteristics of beta parapapillary atrophy (ß-PPA) in patients with primary angle-closure suspect (PACS). METHODS AND ANALYSIS: In total, 215 and 259 eyes with PACS and non-PACS (NPACS), respectively, were enrolled in this observational, cross-sectional study. Stereoscopic fundus and optical coherence tomography images were used to characterise ß-PPA; the former was also used to measure the major ß-PPA parameters. Univariate and multiple logistic regression analyses were used to identify the factors correlated with the presence of ß-PPA and with ß-PPA parameters. RESULTS: The ß-PPA occurrence rates were 48.80% and 44.40% in the PACS and NPACS groups, respectively, with no significant difference between groups. Compared with that in the NPACS group, the ß-PPA area was significantly larger (p=0.005) in the PACS group, but the angular extent and maximum radial length did not differ between groups (p=0.110 and 0.657, respectively) after adjusting for age and axial length. The presence of ß-PPA was associated with older age (OR 1.057, 95% CI 1.028 to 1.088, p<0.001) and larger disc area (OR 1.716, 95% CI 1.170 to 2.517, p=0.006). A larger ß-PPA area was associated with older age (p=0.014), greater vertical cup-to-disc ratio (p=0.028), larger disc area (p<0.001) and PACS diagnosis (p=0.035). CONCLUSION: 48.80% of participants with PACS had ß-PPA, which is slightly larger than NPACS. The area of ß-PPA was larger in PACS, while the angular extent and maximum radial length did not differ between groups.


Assuntos
Oftalmopatias Hereditárias , Glaucoma de Ângulo Aberto , Atrofia Óptica , Disco Óptico , Humanos , Disco Óptico/patologia , Glaucoma de Ângulo Aberto/complicações , Atrofia Óptica/complicações , Estudos Transversais , Pressão Intraocular , Campos Visuais , Atrofia/complicações
4.
Rom J Ophthalmol ; 68(1): 19-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617718

RESUMO

Aim: The research aimed to establish reference values of visual evoked potentials among school-aged children after brain injury. Methods: Eighteen patients with persisting visual symptoms after brain injury have been examined. A pattern-VEP test has been used during the examination. Results: The prolongation of the N2 wave in 55,6%-66,6%, P wave in 55,7%-66,7%, and N3 wave in 16,7%-22,2% was determined in the research group. Likewise, the decrease in the amplitude of the P wave was determined in the case of 16,7%-33,3%. According to the topography, we concluded that the prechiasmatic alteration was predominantly determined as bilateral in the optic pathways, with emphasis equally on the right and left. Conclusions: VEP evaluation remains one of the most credible methods of examination. In the case of moderate or severe traumatic optic neuropathy, it allows the detection of damage to the optic pathways before the appearance of organic changes that are often irreversible. The possibility of early detection of such modifications could justify the initiation of a dosed stimulatory treatment, to avoid damage to the optic pathways that would induce secondary optic atrophy. Abbreviations: VEP = visual evoked potentials, MRI = magnetic resonance imaging.


Assuntos
Lesões Encefálicas , Atrofia Óptica , Criança , Humanos , Potenciais Evocados Visuais
6.
Int Ophthalmol ; 44(1): 173, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598101

RESUMO

PURPOSE: The ROCK inhibitor ripasudil hydrochloride hydrate was shown to have axonal protective effects in TNF-induced optic nerve degeneration. The α2-adrenoreceptor agonist brimonidine was also shown to exert axonal protection. The current study aimed to elucidate whether additive axonal protection was achieved by the simultaneous injection of ripasudil and brimonidine and examine the association with AMPK activation. METHODS: Intravitreal administration was performed in the following groups: PBS, TNF, or TNF with ripasudil, with brimonidine, or with a combination of ripasudil and brimonidine. Axon numbers were counted to evaluate the effects against axon loss. Immunoblot analysis was performed to examine phosphorylated AMPK expression in optic nerves, and immunohistochemical analysis was performed to evaluate the expression levels of p-AMPK and neurofilament in the optic nerve. RESULTS: Both ripasudil alone or brimonidine alone resulted in significant neuroprotection against TNF-induced axon loss. The combination of ripasudil and brimonidine showed additive protective effects. Combined ripasudil and brimonidine plus TNF significantly upregulated p-AMPK levels in the optic nerve compared with the TNF groups. Immunohistochemical analysis revealed that p-AMPK is present in axons and enhanced by combination therapy. CONCLUSION: The combination of ripasudil and brimonidine may have additive protective effects compared with single-agent treatment alone. These protective effects may be at least partially associated with AMPK activation.


Assuntos
Proteínas Quinases Ativadas por AMP , Isoquinolinas , Atrofia Óptica , Sulfonamidas , Humanos , Tartarato de Brimonidina , Regulação para Cima , Axônios , Degeneração Neural
7.
Arch. Soc. Esp. Oftalmol ; 99(4): 158-164, abr. 2024. ilus, tab, graf
Artigo em Espanhol | IBECS | ID: ibc-232136

RESUMO

Se encontraron 4 revisiones sistemáticas que incluían este tipo de iatrogenia ocular, así como numerosos reportes de casos aislados. Los efectos adversos reportados comprenden: paresias oculomotoras, neuropatía óptica, atrofia óptica, síndromes miasteniformes, pseudo-orbitopatía tiroidea, síndrome del ápex orbitario e hipofisitis. La mayoría se manejaron sin interrupción o con interrupción parcial del tratamiento oncológico. Se requirieron tratamientos sistémicos agresivos para el manejo adecuado de la iatrogenia ocular.Es imprescindible que el oftalmólogo se familiarice con los nuevos tratamientos oncológicos ICI, capaces de provocar iatrogenia sobre la motilidad ocular grave e incapacitante para el paciente. La comunicación de efectos adversos con los tratamientos empleados puede ayudar al manejo más adecuado de estos pacientes. La investigación debe ir orientada al diagnóstico diferencial complejo y a optimizar las decisiones sobre los tratamientos oncológicos. (AU)


Cancer therapy relies on new antitumoral drugs called immune checkpoint inhibitors (ICI), which produce long-lasting anti-tumor responses and lengthen survival, but cause autoimmune-type toxicity. The clinical characteristics induced by ICI are not well characterized to date and careful collection of clinical data is required to accurately define its safety profile.We conducted a literature search in the main clinical search engines to identify pharmacological ocular iatrogenic events of ICIs related to ocular motility. Four systematic reviews were found that included this type of ocular iatrogenesis as well as numerous isolated case reports. Reported adverse effects include: oculomotor paresis, optic neuropathy, optic atrophy, myastheniform syndromes, thyroid pseudo-orbitopathy, orbital apex syndrome, and hypophysitis. Most were managed without interruption or with partial interruption of cancer treatment. Aggressive systemic treatments were required for adequate management of ocular iatrogenic events.It is essential that the ophthalmologist become familiar with the new ICI oncological treatments, capable of causing severe and disabling motilidad ocular iatrogenesis for the patient. The communication of adverse effects and the report of the treatments used can help the most appropriate management of these patients. Research should be oriented towards complex differential diagnosis and to optimize decisions on cancer treatments. (AU)


Assuntos
Humanos , Diplopia , Oftalmologia , Preparações Farmacêuticas , Doenças do Nervo Óptico , Atrofia Óptica
8.
Stem Cell Res ; 76: 103363, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38437768

RESUMO

Spastic Ataxias (SA) are a group of neurodegenerative disorders with combined pyramidal and cerebellar system affection, leading to an overlap phenotype between Hereditary Spastic Paraplegias (HSP) and Cerebellar Ataxias (CA). Here we describe the generation of iPSCs from three unrelated patients with an ultra-rare subtype of SA caused by compound heterozygous mutations in POLR3A, that encodes the largest subunit of RNA polymerase III. iPSCs were reprogrammed from normal human dermal fibroblasts (NHDFs) using episomal reprogramming with integration-free plasmid vectors: HIHRSi004-A, derived from a 44 year-old male carrying the mutations c.1909 + 22G > A/c.3944_3945delTG, HIHRSi005-A obtained from a 66 year-old male carrying the mutations c.1909 + 22G > A/c.1531C > T, and HIHRSi006-A from a 27 year-old male carrying the mutations c.1909 + 22G > A/c.2472_2472delC (ENST00000372371.8).


Assuntos
Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Atrofia Óptica , Ataxias Espinocerebelares , Adulto , Idoso , Humanos , Masculino , Linhagem Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Espasticidade Muscular/genética , Mutação , RNA Polimerase III/genética , RNA Polimerase III/metabolismo , Ataxias Espinocerebelares/genética
9.
PLoS One ; 19(3): e0299223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452020

RESUMO

This paper introduces a new decentralized control strategy for an unmanned aerial manipulator (UAM) constrained to the vertical plane. The control strategy comprises two loops: the first compensates for the aerial vehicle's impact on the manipulator; and the second one implements independent controllers for the aerial vehicle and the manipulator. The controller for the aerial vehicle includes an estimator to compensate for the dynamic influence of the manipulator, even if it is affected by external wind-gust disturbances. The manipulator has two revolute joints; however, it is modeled as an dynamically equivalent manipulator, with one revolute and one prismatic joint. The proposed control strategy's performance is evaluated using a simulator that includes the vehicle's aerodynamics and the manipulator's contact force and moment.


Assuntos
Retardo Mental Ligado ao Cromossomo X , Atrofia Óptica , Humanos , Vento
10.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38423010

RESUMO

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Assuntos
Epilepsia Generalizada , Atrofia Óptica , Animais , Humanos , Criança , Peixe-Zebra/genética , Atrofia Óptica/genética , Fenótipo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética
11.
Neurobiol Dis ; 193: 106455, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408685

RESUMO

White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.


Assuntos
Atrofia Óptica , Substância Branca , Humanos , Camundongos , Animais , Imagem de Tensor de Difusão , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Encéfalo , Imageamento por Ressonância Magnética , Atrofia Óptica/patologia
12.
Clin Res Hepatol Gastroenterol ; 48(3): 102299, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38365087

RESUMO

Wilson disease (WD) is an autosomal recessive disorder of copper metabolism. The clinical manifestations of WD are complex and variable, with Kayser-Fleischer ring (K-F ring) and the sunflower cataract being the most common ocular findings. Visual impairment is rare in patients with WD. We report the case of a 17-year-old female with bilateral optic atrophy associated with WD and summarize the clinical features of previously reported cases of optic neuropathy in WD, Clinicians should be aware that WD is a rare cause of optic neuropathy and that optic neuropathy in patients with WD may need to be recognized and screened.


Assuntos
Degeneração Hepatolenticular , Atrofia Óptica , Doenças do Nervo Óptico , Feminino , Humanos , Adolescente , Degeneração Hepatolenticular/complicações , Degeneração Hepatolenticular/diagnóstico , Cobre , Doenças do Nervo Óptico/complicações , Atrofia Óptica/complicações
13.
Mamm Genome ; 35(1): 1-12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351344

RESUMO

Wolfram syndrome (OMIM 222300) is a rare autosomal recessive disease with a devastating array of symptoms, including diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss, and neurological dysfunction. The discovery of the causative gene, WFS1, has propelled research on this disease. However, a comprehensive understanding of the function of WFS1 remains unknown, making the development of effective treatment a pressing challenge. To bridge these knowledge gaps, disease models for Wolfram syndrome are indispensable, and understanding the characteristics of each model is critical. This review will provide a summary of the current knowledge regarding WFS1 function and offer a comprehensive overview of established disease models for Wolfram syndrome, covering animal models such as mice, rats, flies, and zebrafish, along with induced pluripotent stem cell (iPSC)-derived human cellular models. These models replicate key aspects of Wolfram syndrome, contributing to a deeper understanding of its pathogenesis and providing a platform for discovering potential therapeutic approaches.


Assuntos
Atrofia Óptica , Síndrome de Wolfram , Humanos , Ratos , Camundongos , Animais , Síndrome de Wolfram/genética , Síndrome de Wolfram/terapia , Síndrome de Wolfram/diagnóstico , Peixe-Zebra , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Mutação , Proteínas de Ligação a Calmodulina/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
14.
Artigo em Chinês | MEDLINE | ID: mdl-38297853

RESUMO

CAPOS syndrome is an autosomal dominant neurological disorder caused by mutations in the ATP1A3 gene. Initial symptoms, often fever-induced, include recurrent acute ataxic encephalopathy in childhood, featuring cerebellar ataxia, optic atrophy, areflflexia, sensorineural hearing loss, and in some cases, pes cavus. This report details a case of CAPOS syndrome resulting from a maternal ATP1A3 gene mutation. Both the child and her mother exhibited symptoms post-febrile induction,including severe sensorineural hearing loss in both ears, ataxia, areflexia, and decreased vision. Additionally, the patient's mother presented with pes cavus. Genetic testing revealed a c. 2452G>A(Glu818Lys) heterozygous mutation in theATP1A3 gene in the patient . This article aims to enhance clinicians' understanding of CAPOS syndrome, emphasizing the case's clinical characteristics, diagnostic process, treatment, and its correlation with genotypeic findings.


Assuntos
Ataxia Cerebelar , Deformidades Congênitas do Pé , Perda Auditiva Neurossensorial , Atrofia Óptica , Reflexo Anormal , Pé Cavo , Humanos , Criança , Feminino , Ataxia Cerebelar/genética , Ataxia Cerebelar/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/diagnóstico , Atrofia Óptica/genética , Atrofia Óptica/diagnóstico , Mutação , Fenótipo , ATPase Trocadora de Sódio-Potássio/genética
15.
J Neuromuscul Dis ; 11(2): 485-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38217609

RESUMO

Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS). Objective: Here, we identified a homozygous variant (c.309 + 5 G > A) in NDUFS6 in one male patient with axonal neuropathy accompanied by loss of small fibers in skin biopsy and further complicated by optic atrophy and borderline intellectual disability. Methods: To address the pathogenicity of the variant, biochemical studies (mtDNA copy number quantification, ELISA, Proteomic profiling) of patient-derived leukocytes were performed. Results: The analyses revealed loss of NDUFS6 protein associated with a decrease of three further mitochondrial NADH dehydrogenase subunit/assembly proteins (NDUFA12, NDUFS4 and NDUFV1). Mitochondrial copy number is not altered in leukocytes and the mitochondrial biomarker GDF15 is not significantly changed in serum. Conclusions: Hence, our combined clinical and biochemical data strengthen the concept of NDUFS6 being causative for a very rare form of axonal neuropathy associated with optic atrophy and borderline intellectual disability, and thus expand (i) the molecular genetic landscape of neuropathies and (ii) the clinical spectrum of NDUFS6-associated phenotypes.


Assuntos
Deficiência Intelectual , Atrofia Óptica , Humanos , Masculino , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , NADPH Desidrogenase/metabolismo , Atrofia Óptica/genética , Proteômica
16.
Ophthalmic Genet ; 45(2): 120-125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38234168

RESUMO

INTRODUCTION: Biotinidase deficiency (BD) is an inherited autosomal recessive metabolic disorder. BD has been associated with optic nerve atrophy, eye infections, and retinopathy. The most prevalent ophthalmic manifestation of BD is optic atrophy, which might be misdiagnosed as multiple sclerosis or neuromyelitis optica, especially in late-onset BD cases. METHODS: In this article, we report a 9-year-old boy with gradual vision loss. Ophthalmologic examination, Brain MRI, and several laboratory tests such as Aquaporin-4 IgG level and biotinidase level were done on the patient. RESULTS: Bilateral optic atrophy and impaired visual acuity were detected on examination. The patient had a biotin level of 1.25 U/min/ml (normal range 3-9 U/min/ml), favoring the BD. CONCLUSION: In this study, we report a 9-year-old boy with vision loss diagnosed with BD. We also reviewed the literature to highlight the ophthalmic manifestations of BD. Ophthalmologists must consider BD in children with unexplained ophthalmologic complaints, especially when other characteristic signs of BD (e.g., developmental delay, seizure) are present. Also, patients with BD should undergo regular annual ophthalmologic examinations to be checked for any signs of eye involvement.


Assuntos
Deficiência de Biotinidase , Atrofia Óptica , Masculino , Criança , Humanos , Deficiência de Biotinidase/complicações , Deficiência de Biotinidase/diagnóstico , Biotinidase , Biotina , Transtornos da Visão
17.
Eur J Med Genet ; 68: 104917, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38296034

RESUMO

MECR-related neurologic disorder, also known as mitochondrial enoyl CoA reductase protein-associated neurodegeneration (MEPAN) or dystonia with optic atrophy and basal ganglia abnormalities in childhood (MIM: #617282), is an autosomal recessive inherited disease characterized by a progressive childhood-onset movement disorder and optic atrophy. Here we report a 19-year-old male, presented with progressive visual failure, nystagmus, and right orbital pain, with no history of movement or eye disorder in his childhood. His visual decline started at age 18 years, whereas nystagmus emerged seven months later. Analysis of whole-exome sequencing (WES) revealed a homozygous recurrent variant (NM_016011.5:c.772C > T, p.Arg258Trp) in MECR. These findings suggest phenotypic heterogeneity in MECR-related neurologic disorder, thus, more relevant case screening, will help to delineate the genotype-phenotype correlation of the MECR gene.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Atrofia Óptica , Adolescente , Humanos , Masculino , Adulto Jovem , Distúrbios Distônicos/genética , Mutação , Atrofia Óptica/genética
18.
Zhonghua Yan Ke Za Zhi ; 60(2): 180-184, 2024 Feb 11.
Artigo em Chinês | MEDLINE | ID: mdl-38296324

RESUMO

Different from classical autosomal recessive Wolfram syndrome, Wolfram-like syndrome is an autosomal dominant disorder caused by a heterozygous mutation in the WFS1 gene. In this case, a 7-year-old male child presented to the eye clinic due to vision loss that could not be corrected, discovered during a routine examination. The child had experienced hearing impairment since early childhood, leading to cochlear implantation. Ophthalmic examination revealed optic disc atrophy in both eyes. Optical coherence tomography imaging demonstrated a distinctive thickening of the outer plexiform layer with abnormal layering, characteristic of a single mutation in the WFS1 gene. Subsequent genetic testing identified a de novo heterozygous missense mutation c.2051C>T (p.A684V) in the WFS1 gene, which ultimately led to the diagnosis of Wolfram-like syndrome.


Assuntos
Atrofia Óptica , Síndrome de Wolfram , Criança , Humanos , Masculino , Mutação , Atrofia Óptica/genética , Linhagem , Tungstênio , Síndrome de Wolfram/genética , Síndrome de Wolfram/diagnóstico
19.
J Neuroophthalmol ; 44(1): 22-29, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38251954

RESUMO

BACKGROUND: MRI abnormalities are common in optic neuropathies, especially on dedicated orbital imaging. In acute optic neuritis, optic nerve T2-hyperintensity associated with optic nerve contrast enhancement is the typical imaging finding. In chronic optic neuropathies, optic nerve T2-hyperintensity and atrophy are regularly seen. Isolated optic nerve T2-hyperintensity is often erroneously presumed to reflect optic neuritis, frequently prompting unnecessary investigations and neuro-ophthalmology consultations. Our goal was to determine the significance of optic nerve/chiasm T2-hyperintensity and/or atrophy on MRI. METHODS: Retrospective study of consecutive patients who underwent brain/orbital MRI with/without contrast at our institution between July 1, 2019, and June 6, 2022. Patients with optic nerve/chiasm T2-hyperintensity and/or atrophy were included. Medical records were reviewed to determine the etiology of the T2-hyperintensity and/or atrophy. RESULTS: Four hundred seventy-seven patients (698 eyes) were included [mean age 52 years (SD ±18 years); 57% women]. Of the 364 of 698 eyes with optic nerve/chiasm T2-hyperintensity without atrophy, the causes were compressive (104), inflammatory (103), multifactorial (49), glaucoma (21), normal (19), and other (68); of the 219 of 698 eyes with optic nerve/chiasm T2-hyperintensity and atrophy, the causes were compressive (57), multifactorial (40), inflammatory (38), glaucoma (33), normal (7), and other (44); of the 115 of 698 eyes with optic nerve/chiasm atrophy without T2-hyperintensity, the causes were glaucoma (34), multifactorial (21), inflammatory (13), compressive (11), normal (10), and other (26). Thirty-six eyes with optic nerve/chiasm T2-hyperintensity or atrophy did not have evidence of optic neuropathy or retinopathy on ophthalmologic examination, and 17 eyes had clinical evidence of severe retinopathy without primary optic neuropathy. CONCLUSIONS: Optic nerve T2-hyperintensity or atrophy can be found with any cause of optic neuropathy and with severe chronic retinopathy. These MRI findings should not automatically prompt optic neuritis diagnosis, workup, and treatment, and caution is advised regarding their use in the diagnostic criteria for multiple sclerosis. Cases of incidentally found MRI optic nerve T2-hyperintensity and/or atrophy without a known underlying optic neuropathy or severe retinopathy are rare. Such patients should receive an ophthalmologic examination before further investigations.


Assuntos
Glaucoma , Atrofia Óptica , Doenças do Nervo Óptico , Traumatismos do Nervo Óptico , Neurite Óptica , Doenças Retinianas , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Estudos Retrospectivos , Nervo Óptico/diagnóstico por imagem , Nervo Óptico/patologia , Doenças do Nervo Óptico/patologia , Neurite Óptica/etiologia , Imageamento por Ressonância Magnética/métodos , Atrofia Óptica/diagnóstico , Atrofia Óptica/complicações , Traumatismos do Nervo Óptico/complicações , Atrofia/complicações , Atrofia/patologia , Glaucoma/complicações , Glaucoma/patologia , Doenças Retinianas/complicações
20.
Int J Dev Neurosci ; 84(1): 75-83, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38010976

RESUMO

INTRODUCTION: NR2F1 pathogenetic variants are associated with the Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Recent studies indicate that BBSOAS patients not only have visual impairments but may also have developmental delays, hypotonia, thin corpus callosum and epileptic seizures. However, reports of BBSOAS occurrence along with infantile epileptic spasm syndrome (IESS) are rare. METHODS: Here, we report three cases involving children with IESS and BBSOAS caused by de novo NR2F1 pathogenetic variants and summarize the genotype, clinical characteristics, diagnosis and treatment of them. RESULTS: All three children experienced epileptic spasms and global developmental delays, with brain Magnetic Resonance Imaging (MRI) suggesting abnormalities (thinning of the corpus callosum or widened extracerebral spaces) and two of the children exhibiting abnormal visual evoked potentials. CONCLUSIONS: Our findings indicate that new missense NR2F1 pathogenetic variants may lead to IESS with abnormal visual evoked potentials. Thus, clinicians should be aware of the Bosch-Boonstra-Schaaf optic atrophy syndrome and regular monitoring of the fundus, and the optic nerve is necessary during follow-up.


Assuntos
Potenciais Evocados Visuais , Atrofia Óptica , Criança , Humanos , Fator I de Transcrição COUP/genética , Mutação de Sentido Incorreto , Atrofia Óptica/diagnóstico por imagem , Atrofia Óptica/genética , Fenótipo , Espasmo , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...